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Lagrangian Relaxation-Based Time-Division Multiplexing

Optimization for Multi-FPGA Systems

CHAK-WA PUI and EVANGELINE F. Y. YOUNG, The Chinese University of Hong Kong,
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To increase the resource utilization in multi-FPGA (field-programmable gate array) systems, time-division
multiplexing (TDM) is a widely used technique to accommodate a large number of inter-FPGA signals. How-
ever, with this technique, the delay imposed by the inter-FPGA connections becomes significant. Previous re-
search has shown that the TDM ratios of signals can greatly affect the performance of a system. In this article,
to minimize the system clock period and support more practical constraints in modern multi-FPGA systems,
we propose an analytical framework to optimize the TDM ratios of inter-FPGA nets. A Lagrangian relaxation-
based method first gives a continuous result under relaxed constraints. A binary search–based discretization
algorithm is then used to assign the TDM ratio of each net such that the resulting maximum displacement
is optimal and all the constraints are satisfied. Finally, a swapping-based post refinement is performed to
further optimize the TDM ratios. For comparison, we also solve the problem using linear programming (LP)–
based methods, which have guaranteed error bounds to the optimal solutions. Experimental results show that
our framework can achieve similar quality with much shorter runtime compared to the LP-based methods.
Moreover, our framework scales for designs with over 45,000 inter-FPGA nets while the runtime and memory
usage of the LP-based methods will increase dramatically as the design scale becomes larger.

CCS Concepts: • Hardware → Wire routing; Programmable interconnect;

Additional Key Words and Phrases: EDA, time-division multiplexing, FPGA, routing, Lagrangian relaxation

ACM Reference format:

Chak-Wa Pui and Evangeline F. Y. Young. 2020. Lagrangian Relaxation-Based Time-Division Multiplexing
Optimization for Multi-FPGA Systems. ACM Trans. Des. Autom. Electron. Syst. 25, 2, Article 21 (January 2020),
23 pages.
https://doi.org/10.1145/3377551

1 INTRODUCTION

In recent years, field-programmable gate array (FPGA) has become very popular in various fields
including deep learning [2] and data centers [3]. Although the scale of FPGAs has greatly increased,
it is still unlikely to fit the entire design into one FPGA in applications such as logic emulation and
rapid prototyping of large designs [4]. Hence, multi-FPGA systems are usually used. A multi-FPGA
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system consists of multiple FPGAs which are connected using direct hardwired connections or a
programmable interconnection network [5].

In multi-FPGA systems, the available pin count of each FPGA is relatively small compared to
the number of inter-FPGA signals, which significantly limits the utilization of the logic resources.
Time-division multiplexing (TDM) is a method that multiplexes the use of FPGA pins and inter-
FPGA physical wires among multiple inter-FPGA signals [6]. Although the number of logical pins
available in each FPGA can be effectively increased, this technique makes the system clock period
longer since the inter-FPGA signal delay is lengthened due to time-multiplexing. There are various
methods to reduce the negative effect of time-multiplexing on delay during compilation such as
minimizing the number of inter-FPGA signals. TDM optimization is still an important step in the
compilation flow since different TDM ratios can result in very different system clock periods [7].

In the compilation flow of multi-FPGA systems, TDM ratios are usually determined after inter-
FPGA routing [6]. Several methods are proposed to optimize the TDM ratios in recent works.
In [8], an integer linear programming (ILP)–based method for 2-FPGA systems is introduced. It
tries to put non-critical inter-FPGA nets in TDM wires to improve the utilization without affecting
the timing of the systems, which results in a 0-1 decision problem for each net. The works [9–11]
extend [8] to support multi-FPGA systems with partially connected FPGAs. Due to the increasing
number of inter-FPGA signals in multi-FPGA systems, ILP-based methods are no longer able to
produce high-quality results with scalable running time. A recent work [12] proposes a framework
that performs TDM assignment and partitioning simultaneously. For signal grouping, a binary
search–based method is used to enumerate all the possible groupings. However, the cost they
optimize is not the system clock period but an estimated timing criticality metric. The work [13]
proposes an analytical framework that performs TDM optimization with minimized system clock
ratio. But the continuous solver is slow for convex problems and the discretization method does
not scale well for big designs. Moreover, the TDM ratios can be arbitrary integers in previous
works except the work [13], which is not true in practice [7]. Therefore, an efficient and effective
TDM optimization algorithm for modern multi-FPGA systems is needed.

Lagrangian relaxation is a widely used method in convex optimization due to its effectiveness
and efficiency. In physical designs, there are a lot of previous works that apply Lagrangian re-
laxation in their problems. The works [14, 15] use Lagrangian relaxation to optimize area and
wirelength during floorplanning. The works [16–18] solve the gate sizing problem with different
Lagrangian relaxation approaches, where circuit delay and area are minimized. In [19], Lagrangian
relaxation is applied in timing-driven global placement to improve circuit performance. Lagrangian
relaxation can also be applied in our TDM optimization problem since it can be relaxed to a convex
and continuous formulation.

In this work, we propose an analytical framework for the TDM optimization problem. The major
contributions are summarized as follows:

• An analytical framework is proposed to optimize the system clock period globally in the
multi-FPGA TDM optimization problem. It first generates a continuous result of the TDM
ratios with minimized system clock period under relaxed constraints. A discretization algo-
rithm is then applied to remove all the constraint violations. Finally, a swapping-based post
refinement is performed to further optimize the TDM ratios. Compared to previous works,
our approach supports wires with a user given set of TDM ratios, which is more practical
in modern multi-FPGA systems.

• A Lagrangian relaxation-based approach is proposed to solve the continuous TDM op-
timization problem which is effective and efficient. A novel method is proposed to ini-
tialize and update the multipliers such that the solver converges faster. In particular, our
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Table 1. Notations

T The set of all FPGA-pairs.
ti The set of inter-FPGA nets of the FPGA-pair i in T .
pi Wire limit of the FPGA-pair i in T .
G Timing graph.

дsrc,дsink Source and sink of G.
дi Node i in G representing gate i .
ep,q Edge from дp to дq in G.

Ei The set of edges correspond to inter-FPGA net neti .

ei The ith edge in G.
delayp,q Delay of ep,q .

atp Arrival time of дp .

atp,q Arrival time along edge ep,q and atp,q = atp + delayp,q .

xi TDM ratio of inter-FPGA net neti .
xp,q TDM ratio of ep,q and xi = xp,q for all ep,q ∈ Ei .

bp,q , cp,q Architecture related parameters of ep,q .

ec
p,q (ex

p,q ) An edge from дp to дq representing an intra-FPGA (inter-FPGA) net.

method not only captures the characteristics of the timing optimization but also considers
the Karush-Kuhn-Tucker (KKT) conditions during update.

• An algorithm is proposed to discretize the continuous TDM result which will produce a
legal solution with the smallest maximum displacement. A binary search–based method
is used to find the minimum feasible maximum displacement. Given the bounded TDM
discrete choices, a dynamic programming (DP)–based approach is then used to produce a
legal solution with the optimal total displacement under the minimum feasible maximum
displacement constraint.

• A post refinement algorithm is proposed to further optimize the results of discretization,
which will swap the TDM ratios between critical and non-critical nets.

• Several linear programming (LP)–based methods are proposed as the baselines of our algo-
rithm. A technique is proposed to improve the error rate of our LP methods to about 4% of
the optimal solution of the continuous formulation, which further validates the quality of
our proposed method.

The remainder of this article is organized as follows. Section 2 gives the preliminaries of the
problem. Sections 3–6 first give an overview of our approach and then introduce its details. Sec-
tion 7 shows the experimental results, and we finally conclude the article in Section 8.

2 PRELIMINARIES

In this section, we first explain our target architecture and its compilation flow. The problem def-
inition will then be introduced. The notations used in the rest of this article are shown in Table 1.
Note that, throughout this article, tdmNet refers to inter-FPGA net for simplicity.

2.1 Target Architecture

We consider a multi-FPGA system with time-multiplexed hardwired inter-FPGA connections
where two FPGAs are adjacent logically if they are directly connected in the system. In our target
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Fig. 1. An example of how FPGAs are connected to each other. Here B is adjacent to C,D while A,B are not

adjacent to each other.

Fig. 2. An example of inter-FPGA time-multiplexed I/Os where three different signals share one wire.

system, two adjacent FPGAs are called an FPGA-pair. Figure 1 gives an example of how FPGAs are
connected in such systems. Although only connections between FPGA-pairs are considered in this
work, it can be easily extended to architectures where FPGAs can communicate with each other
through multiple intermediate hops.

Since the number of tdmNets is much larger than the number of physical wires between FPGAs,
time-multiplexed wires are usually used to connect different FPGAs. In such systems, only the
tdmNets in the same direction and with the same TDM ratio can be assigned to the same wire.
Moreover, there should be no more than n tdmNets assigned to a wire with TDM ratio n. Figure 2
is an example of the inter-FPGA time-multiplexed I/Os in our target architecture. It is implemented
with a 3 : 1 multiplexer (MUX) placed in the same device as the three signal sources and the same
amount of registers placed in the other device. The MUX inputs are selected by a TDM clock, and
the MUX input signals are transmitted to FPGA B sequentially. The registers are used to store
values of the signals passing the MUX. For each signal going through the routing channel, its
value first arrives at the MUX input and will wait until the MUX is open for it to go through. After
going through the channel, it is latched in a register which becomes the pseudo source of the
signal. When estimating the delay of a signal in our target architecture, I/O TDM implementation
assumes the worst case scenario, which happens when the signal needs to wait for an entire TDM
cycle to reach its turn. Hence, the transmission delay is a monotonically increasing function of the
TDM ratio of its corresponding wire. Given a tdmNet neti going through a wire with TDM ratio
xi , the delay of edge ep,q can be calculated as (bp,q · xi + cp,q ) for all ep,q ∈ Ei , where bp,q , cp,q
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Fig. 3. A typical compilation flow for multi-FPGA systems and the overall flow of our approach.

are architecture related parameters corresponding to ep,q . Due to the architecture limitations, the
TDM ratio can only be 1 or multiples of 8 instead of an arbitrary integer [7]. And we limit the
maximum value of TDM ratio to be 1,600 in this article, which is a parameter that can be changed.

2.2 Compilation Flow

A typical compilation flow for multi-FPGA systems [20] is shown in Figure 3. The first step of the
compilation flow is logic synthesis and technology mapping where the given circuit is mapped
into a netlist of primitive elements such as lookup tables (LUTs), flip-flops (FFs), RAMs, DSPs,
and so forth. The netlist is then divided into partitions such that each partition can fit into a
single FPGA and the number of inter-FPGA connections is minimized. Inter-FPGA placement puts
each partition into a distinct FPGA on the board. Inter-FPGA routing is then performed which
considers both system performance and routing resources. It determines the routing topology
and the TDM ratio for each tdmNet. It must ensure that the number of tdmNets between any two
adjacent FPGAs will not require more physical wires than available under their TDM specification.
Given the routing result, TDM optimization is applied to optimize the TDM ratios regarding the
system clock period. After that, pin assignment will choose the physical wire and pins for each
tdmNet subject to the TDM constraints from the previous steps. Finally, the placement and routing
of individual FPGAs are performed.

2.3 Problem Definition

Definition 1. The TDM ratio of a tdmNet represents the maximum number of signals that it
can share a physical wire with.

Definition 2. For any two tdmNetsneta ,netb ∈ tA, they are in the same direction if their sources
are from the same FPGA.

In the TDM optimization problem, given the system architecture and the timing graph con-
structed from the inter-FPGA routing result, we need to determine the TDM ratio for each tdm-
Net. The objective is to minimize the system clock period, which is the arrival time at the sink
in the timing graph. The TDM ratios of the tdmNets between the FPGA-pair i should satisfy the
following constraints.
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Fig. 4. An example of TDM optimization problem.

• Each TDM ratio should be either 1 or multiples of 8.
• Only tdmNets with the same TDM ratio and in the same direction can be assigned to the

same wire.
• The number of tdmNets in a wire with TDM ratio n should not exceed n.
• The total number of wires used cannot exceed the wire limit pi .

An example of the TDM optimization problem is shown in Figure 4 where all cp,q and bp,q are
assumed to be 0 and 1, respectively. There are two wires between the FPGA-pair and three tdmNets
from FPGA A to B. Let the TDM ratios for these three tdmNets be x1,x2,x3 and the arrival times
of their driving pins are 16, 8, 8, respectively. The system clock period is the maximum arrival
time at the primary outputs at FPGA B which is atsink = max(16 + x1, 8 + x2, 8 + x3). The optimal
assignment of the TDM ratios of this system will be (x1,x2,x3) = (1, 8, 8) in which the tdmNetsnet2
and net3 can share one physical wire.

3 TDM OPTIMIZATION FRAMEWORK

The flow of our TDM optimization framework is shown in Figure 3. Given an inter-FPGA routing
result, the corresponding timing graph is first constructed. Our continuous solver is then built
based on the timing graph, which minimizes the system clock period under relaxed TDM con-
straints. To be specific, each TDM ratio is within the range [1, 1,600] and

∑
j ∈ti

1
x j
≤ pi holds for

every FPGA-pair i . After that, we can get a continuous result of the TDM ratios with optimized
system clock period. Our discretization algorithm is then performed such that all the TDM ratio
violations are removed while the continuous result is honored. Finally, a post refinement algorithm
is applied to further optimize the system clock period without inducing new constraint violation.
Details of our continuous solver, discretization algorithm, and post refinement method will be
discussed in Sections 4, 5, and 6, respectively.
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4 CONTINUOUS SOLVER

To simplify the notations in this section, we assume (1) bp,q = 1 and cp,q = 0 for all inter-FPGA
edges ex

p,q and (2) delayp,q = 0 for all intra-FPGA edges ec
p,q . However, these parameters are not

restricted to such assumptions during experiments. As discussed in the previous section, our con-
tinuous solver will solve the TDM optimization problem under relaxed constraints. In the original
problem shown in Equation (1), atsink is a function of the TDM ratios and arrival time.

min atsink , (1a)

s .t .
∑
j ∈ti

1

x j
≤ pi , ∀i ∈ T , (1b)

atq = max( max
ex

p,q ∈Ei

(atp + xi ),max
ec

p,q

(atp )), ∀дq ∈ (G \ дsrc ), (1c)

atsrc = 0, (1d)

1 ≤ xi ≤ 1,600, ∀xi . (1e)

However, in our solver, the function is equivalently transformed into a set of constraints, which
is shown in Equation (2).

PP : min atsink , (2a)

s .t .
∑
j ∈ti

1

x j
≤ pi , ∀i ∈ T , (2b)

atq ≥ atp + xi , ∀ex
p,q ∈ Ei , (2c)

atq ≥ atp , ∀ec
p,q , (2d)

atq ≥ 0, ∀ec
src,q , (2e)

1 ≤ xi ≤ 1,600, ∀xi . (2f)

It is obvious that Equation (2) is convex, we will show how to solve it in the following.

4.1 Lagrangian Relaxation

In the Lagrangian relaxation procedure, the constraints that make the problem hard to solve will
be moved to the objective. Here, the constraints shown in Equations (2b)–(2e) are relaxed. For each
relaxed constraint, a non-negative variable called Lagrange multiplier is introduced such that any
violations of these constraints will be penalized and hence avoided. To be specific, we introduce
λi for the wire limit constraint of each FPGA-pair i and μp,q for the timing constraint imposed by
ep,q . Note that, μ,λ,x ,at denote the sets of variables μp,q , λi ,xi ,atp , respectively. Let

Lμ,λ (x, at ) = atsink +
∑
i ∈T

λi · ��
�

∑
j ∈ti

1

x j
− pi

��
�

(3a)

+
∑
xi

∑
ex

p,q ∈Ei

μp,q · (atp + xi − atq ) (3b)

+
∑
ec

p,q

μp,q · (atp − atq ) +
∑

ec
sr c,q

μsrc,q · (−atq ). (3c)

Then the Lagrangian relaxation subproblems (LRS) associated with the Lagrange multipliers
μ, λ will be

LRS/(μ, λ) : min Lμ,λ (x, at ), (4a)

s .t . 1 ≤ xi ≤ 1,600, ∀xi . (4b)
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4.2 Solving LRS/(μ, λ)

By the KKT conditions, the optimal solutions of PP also optimize LRS/(μ, λ), so (μ, λ) must

satisfy the conditions
∂Lμ,λ

∂atp
= 0 and

∂Lμ,λ

∂xi
= 0 at the optimum. Therefore, in searching for the

(μ, λ) to optimize the Lagrangian dual problem (LDP) shown in Equation (9), we only consider
those multipliers that satisfy these conditions, which implies the optimality conditions on the
multipliers as shown in Equations (5)–(7).∑

ep,sink

μp,sink = 1, (5)

∑
ep,i

μp,i =
∑
ei,q

μi,q , ∀дi , (6)

λi
1

x2
j

=
∑

ex
p,q ∈Ej

μp,q , ∀j ∈ ti ;∀i ∈ T . (7)

Hence, given (μ, λ), we can get x as below:

x j = min �
�
1,600,max �

�
1,

√
λi∑

ex
p,q ∈Ej

μp,q

�
�
�
�
, ∀j ∈ ti ;∀i ∈ T . (8)

By combining and rearranging Equations (3), (5), and (6), the coefficients of all atp become zero.
In our method, we forward propagate to calculate atp after getting x by Equation (8).

4.3 Solving the LDP
Given that μ, λ are two sets of non-negative variables, it is obvious that the optimal value of
LRS/(μ, λ) is no greater than that of PP. Hence, if we maximize the minimum value of Lμ,λ , we
obtain a tighter lower bound of the PP. By updating μ, λ iteratively, the lower bound imposed by
Lμ,λ will become closer to the optimal solution of PP and finally converge. Let Q (μ, λ) denote
the optimal value of LRS/(μ, λ). The LDP is as follows:

LDP : max Q (μ, λ), (9a)

s .t . λi ≥ 0, μp,q ≥ 0, ∀i ∈ T ;∀ep,q , (9b)∑
ep,sink

μp,sink = 1, (9c)

∑
ep,i

μp,i =
∑
ei,q

μi,q , ∀дi . (9d)

Since PP is convex, we can apply Theorem 6.2.4 of [21], which implies that the optimal solution
of LDP will also optimize PP.

As mentioned before, we only need to consider (μ, λ) in the solution space Ω defined by Equa-
tions (9b)–(9d) when we optimize the LDP. Previous works usually use an arbitrary assignment
of multipliers as a starting point and then iteratively update the multipliers. To update the multi-
pliers, a two-step approach is usually used, which first applies subgradient optimization to update
the multipliers and then projects them back to the solution space defined by the KKT conditions.
However, we find these methods hard to control and slow due to the projection step and the bad
starting point. Hence, unlike previous methods, we start with a good initial assignment of the
multipliers in Ω, which is shown in Section 4.3.1. The multipliers are then updated by a novel
method shown in Section 4.3.2, which reflects the nature of timing optimization and considers the
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Fig. 5. An example of how the PTE is computed and the initialization of μ. Note that the green edges repre-

sent inter-FPGA nets.

ALGORITHM 1: Solving the LDP.

Input: The timing graph and the architecture information.
Output: A set of continuous TDM ratios with optimized system clock ratio.

1: initialize the multipliers; � see Section 4.3.1
2: repeat

3: solve LRS; � see Section 4.2
4: update the best solution if the objective value is better;
5: update the multipliers; � see Section 4.3.2
6: until reach iteration limit or no more improvement
7: restore the best solution;

KKT conditions during the updates. Note that, since the methods are all based on a topological or-
der of the circuit graph, the computations can be easily parallelized among the nodes at the same
topological level. Algorithm 1 shows the overall flow of solving LDP.

4.3.1 Multiplier Initialization. As shown in Sections 4.1 and 4.2, μp,q indicates the timing criti-
cality of ep,q when solving LRS/(μ, λ). However, the timing criticality of each edge is unknown
during initialization. As mentioned in previous sections, a large part of the system clock period
comes from the delay of the time-multiplexed wires; we thus can correlate the initial value of μp,q

with the number of TDM edges that affect atp,q . The numbers of TDM edges encountered on any
paths from a source to a node дp or to an edge ep,q , called preceding TDM edges (PTE), are first
calculated as shown in Equations (10)–(12).

PTEec
p,q
=

PTEдp

|{i |ep,i ∈ G}|
, ∀ec

p,q , (10)

PTEex
p,q
=

PTEдp

|{i |ep,i ∈ G}|
+ 1, ∀ex

p,q , (11)

PTEдp
=

{
0, if дp = дsrc ,∑

ei,p
PTEei,p , otherwise.

(12)

The constraints shown in Equations (9c) and (9d) are transformed into flow constraints in the tim-
ing graphG. Multiplier μp,q for each edge ep,q is then initialized as shown in Equation (13), which
will ensure that the flow constraints are satisfied since PTEдp

=
∑

ei,p
PTEei,p as in Equation (12).

Now μp,q is proportional to the number of TDM edges that affect atp,q .
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ALGORITHM 2: Balance flow through дp .

Input: An unbalance flow of дp where
∑

ep,i
μ ′p,i <

∑
ej,p

μ j,p and a set of multipliers M ⊂ {μ j,p |ej,p ∈ G}
to update.

Output:
∑

ep,i
μ ′p,i =

∑
ej,p

μ ′j,p is satisfied.

1: Δ← ∑ep,i
μ ′p,i −

∑
ej,p

μ j,p ;

2: sort the multipliers in M in non-decreasing order of their arrival time gaps (atj,p − atp ); let s[k] be the

arrival time gap of the kth multiplier μ[k] in the sorted sequence;
3: let lastIdx be the smallest index such that s[k] · μ[k] = 0 holds for all k ∈ [lastIdx , |M | − 1];
4: curIdx ← 0;

5: α ← |Δ |∑|M |−1
k=cur I dx

(μ[k]· s[k ]
s[cur I dx ] )

;

6: while α > 1 do

7: if curIdx = lastIdx then

8: muSum ← ∑ |M |−1
k=cur Idx

μ[k];

9: μ[i]← μ[i] − Δ · μ[i]
muSum for all i ∈ [curIdx , |M | − 1];

10: quit procedure;
11: end if

12: Δ← Δ + μ[curIdx], μ[curIdx]← 0, curIdx ← curIdx + 1;

13: α ← |Δ |∑|M |−1
k=cur I dx

(μ[k]· s[k ]
s[cur I dx ] )

;

14: end while

15: μ[i]← μ[i] · (1 − α · s[i]
s[cur Idx ] ) for all i ∈ [curIdx , |M | − 1];

μp,q =

⎧⎪⎪⎨⎪⎪⎩

PT Eep,q

PT Eдq
· 1, if дq is the sink,

PT Eep,q

PT Eдq
·∑eq,i

μq,i , otherwise.
(13)

Figure 5 is an example of how we calculate the PTE and initialize μ.
After getting the initial assignment of μ, we initialize λ such that the resources of each FPGA-

pair are used as much as possible. From Equation (8) and the constraint that the maximum usage
should be no greater than pj for each FPGA-pair j, we have

maxUsaдej =
∑
i ∈tj

1

xi
=
∑
i ∈tj

√∑
ex

p,q ∈Ei
μp,q

λj
≤ pj , ∀j ∈ T . (14)

Moreover, we want to make sure that the initial value of each xi , calculated by Equation (7), is no
less than 1. Hence, λ is initialized as below:

λj = max
����
�

���
�

∑
i ∈tj

√∑
ex

p,q ∈Ei
μp,q

pj

���
�

2

,max
i ∈tj

��
�

∑
ex

p,q ∈Ei

μp,q
��
�

����
�
, ∀j ∈ T , (15)

where the first part maximizes wire usage and the second part ensures xi ≥ 1 for all i ∈ tj .

4.3.2 Multiplier Update. After solving LRS/(μ, λ), we will update μ according to the timing
criticality of each edge. A ratio r = α · 0.5δ ·i is used to control the convergence speed and qual-
ity, where i is the current number of iterations and α ,δ are set to 0.2, 0.01, respectively, in our
implementation.
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We will update μ in a propagation-based approach similar to greedy timing optimization, which
tries to reduce the delay along the critical paths in each iteration. First, we will change μi,sink as
shown below:

μ ′i,sink =

{
μi,sink · (1 + r ), if ati,sink ≥ 0.95 · atsink ,
updated as shown in Algorithm 2, otherwise.

(16)

To be specific, Algorithm 2 will try to decrease the given set of multipliers in proportion to their
values and gradients such that the flow constraints shown in Equation (9c) are satisfied. By doing
so, the multipliers associated with the critical edges connected to the sink are increased while the
others are decreased, which results in smaller differences between the arrival time along different
fan-in edges of the sink since the multipliers associated with the critical (noncritical) paths are

increased (decreased) and x j is proportional to
√

1∑
ex

p,q ∈Ej
μp,q

.

After changing the multipliers associated with the sink, we will propagate the changes to the
others such that the flow constraints in Equation (9d) are satisfied. When a node дp whose flow
constraint is violated after the multipliers associated with its fan-out edges are updated, there are
two cases: (1)

∑
ej,p

μ j,p <
∑

ep,i
μp,i and (2)

∑
ej,p

μ j,p >
∑

ep,i
μp,i . The first case infers that atp is on

at least one of the critical paths and atp need to be decreased in order to improve atsink . Hence, we
will average out the difference among the edges {ei,p |ati,p ≥ 0.95 · atp } as shown in Equation (17)
since they are considered to have similar timing criticality.

μ ′i,p = μi,p +
μi,p∑

{k |atk,p ≥0.95·atp }
μk,p

· ��
�

∑
ep, j

μp, j −
∑
ek,p

μk,p
��
�
. (17)

Although gate дp in case (2) is less timing critical compared to those in case (1), it may still be on
one of the critical paths. Algorithm 2 is used to update the multipliers corresponding to the drivers
of дp . To minimize the possibility of increasing atsink , we first try to only decrease the multipliers
μ j,p for all j ∈ {k |atk,p < atp }. When the flow constraint cannot be satisfied by only decreasing
these multipliers, we will average out the difference to each multiplier in proportion to its value
as shown on lines 7–11. However, there is a special case where the arrival time along each fan-in
edge is equal to atp . For such case, we will average out the difference among all the fan-in edges
in the same way as in Equation (17).

After updating μ, λ is updated in the same way as in Equation (15).

5 DISCRETIZATION

Since the continuous solver optimizes the TDM ratios in a global manner, its result should be
honored during discretization. Instead of minimizing the total displacement, our discretization
algorithm will find a legal TDM assignment for each FPGA-pair with minimum total displacement
under the optimal maximum displacement bound. The problem formulation of the FPGA-pair A is
shown in Equation (18).

min
∑
i ∈tA

|xcont
i − xdiscr

i |, (18a)

s .t . All TDM ratio constraints are satisfied, (18b)

|xcont
i − xdiscr

i | ≤ bndA, ∀i ∈ tA, (18c)

where bndA is the optimal maximum displacement bound of the FPGA-pair A. Note that, since
each FPGA-pair is independent in our formulation, they can be discretized in parallel.

The optimal maximum displacement boundbndA is first found by a binary search–based method
as shown in Algorithm 3. During the binary search, given a maximum displacement bounddispbnd ,
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ALGORITHM 3: Binary Search–Based Bound Searching.

Input: The continuous TDM ratios of the FPGA-pairA.
Output: The minimum feasible maximum displacement bndA.

1: get the lower bound lb of maximum displacement;
2: sort the tdmNets in the FPGA-pairA in non-decreasing order of their continuous solutions; let the sorted

sequence be seq;
3: sort seq stably such that the tdmNets under forward direction are always in front of those under backward

direction;
4: let x[k],dir [k] be the TDM ratio and direction of the kth tdmNet in seq;
5: using binary search from lb to find the minimum feasible maximum displacement;

6: function getMinWire(idx )
7: minWireRequire ← 0;
8: for i ← idx ; i < |tA |; do

9: maxChoice ← the largest available choice of x[i];
10: i ← getEndIdx(idx ,maxChoice);
11: increaseminWireRequire by one;
12: end for

13: returnminWireRequire ;
14: end function

15: function getEndIdx(idx , choice)
16: maxEndIdx ← min( |tA |, idx + choice );
17: for i ∈ [idx + 1, |tA | − 1] do

18: return i if choice is out of the choice range of x[i] or dir [i] � dir [idx];
19: end for

20: returnmaxEndIdx ;
21: end function

we will first generate the available discrete TDM choices for each tdmNet such that the distance
between the continuous solution and every choice is within dispbnd . The feasibility of dispbnd

is equivalent to whether the minimum number of required physical wires under the current set
of choices, obtained by getMinWire(0), is no greater than the wire limit pA. According to the
feasibility of dispbnd , we will continue the binary search until the minimum feasible maximum
displacement bound is found.

Definition 3. Given the optimal maximum displacement bound bndA of FPGA pair A, for a
tdmNet neta ∈ tA, the choice range of neta is denoted as rnдa = [rnдs

a , rnд
e
a] where rnдs

a =

max(xcont
a − bndA, 1) and rnдe

a = max(xcont
a + bndA, 1,600).

Given an FPGA pair A and the maximum displacement bound dispbnd , Theorem 1 proves that
getMinWire(0) will return the minimum number of wires needed under the given set of choices.
It is easy to see that our binary search will return the optimal maximum displacement bound if
Theorem 1 is true. For simplicity, in the proof of Theorem 1, we assume that all the signals of a
FPGA-pair are in the same direction. Since signals in different directions cannot be assigned to
the same wire, the complete proof can be easily deduced. Given a tdmNet neta , let its TDM ratios
before and after discretization be xc

a and xd
a , respectively.

Lemma 1. Given a solution of TDM assignment which requires the minimum number of wires, it

can be transformed into a solution that requires the same number of wires and xc
1 ≤ xc

2 holds for any

two tdmNets net1,net2 if xd
1 ≤ xd

2 .
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Proof. Given a solution of TDM assignment which requires the minimum number of wires, we
first sort the wires in non-decreasing order of their TDM ratios. Then, within each wire, we sort the
tdmNets in non-decreasing order of their continuous solutions. Given two wires whose TDM ratios
are r1, r2 (r1 ≤ r2) and the two tdmNetsneta ,netb among them, respectively, ifxc

a > xc
b
, we can swap

the TDM ratios of them without changing r1, r2 since r1, r2 is in the intersection (rnдs
a ≤ r1 ≤ r2 ≤

rnдe
b
) of the choice ranges of neta ,netb . After repeatedly performing the swappings mentioned

above, the solution still requires the same number of wires and xc
1 ≤ xc

2 holds for any two tdmNets

net1,net2 if xd
1 ≤ xd

2 . �

Theorem 1. getMinWire(0) will return the minimum number of wires needed under the given set

of choices.

Proof. Given that the tdmNets are sorted in non-decreasing order of their continuous solu-
tions, getMinWire(0) is a partitioning algorithm. Since it will maximize the TDM ratio and the
number of signals of each partition, the resulting solution will require the minimum number of
partitions which is equivalent to the number of wires. As shown in Lemma 1, a solution that re-
quires minimum number of wires can be transformed into a partitioning of a non-decreasing order
of the tdmNets’ continuous TDM values. Hence, getMinWire(0) will return the minimum number
of wires needed under the given set of choices. �

After finding the optimal maximum displacement bound, we will use a top-down DP to get a
legal TDM assignment of the FPGA-pairA, which is the optimal solution of Equation (18). Details of
the DP are shown in Algorithm 4. Note that, the discrete TDM choices are traversed in ascending
order on line 12. Procedure getMinPA(i,pp) will generate the optimal TDM ratios for the ith to
the nth tdmNets in the sequence using pp wires. In the following, we will show an example of
how to compute getMinPA. Given a set of discrete TDM choices tci for the ith tdmNet such that
|tci

q − x[i]| ≤ bndA holds for all tci
q ∈ tci , getMinPA(i,pp) is equal to mintc i

q ∈tc i costtc i
q
, which is

computed as below:

costtc i
q
= min

0≤j≤n

⎧⎪⎨⎪⎩
getMinPA(i + j + 1,pp − 1) +

i+j∑
k=i

|x[k] − tci
q |
⎫⎪⎬⎪⎭
,

where n is the maximum index such that |x[j] − tci
q | ≤ bndA holds for all j ∈ [i,n + i] and n < tci

q .
Some pruning techniques are applied to accelerate the process without changing the optimal-

ity. As shown on line 12, we skip the discrete TDM choices smaller than the nearest one of x[i]
(obtained by nearestTDM) because smaller choices will induce more displacement and use more
wire resources. minIdx and prevIdx denote the minimum numbers of tdmNets in the ppth wire
under the current and next discrete TDM choice, respectively. On line 14, we increase minIdx as
long as tcq is the nearest discrete TDM choice of x[i +minIdx + 1] because smallerminIdx will in-
crease the number of wires used without reducing the total displacement. On line 15, we increase
prevIdx as long as x[i + prevIdx + 1] ≤ tcq . It will be the starting value of minIdx for the next

discrete TDM choice tcq+1 since
∑j

k=i
|x[k] − tcq | <

∑j

k=i
|x[k] − tcq+1 | holds for any j no greater

than i + prevIdx . On line 19, the loop ends since a larger j will only increase the total displace-
ment (curDisp) of the ppth wire which is already larger than the best cost (curBest ) of the current
discrete TDM choice tcq .

Theorem 2 proves that Algorithm 4 can obtain the optimal solution for the problem shown in
Equation (18).

Lemma 2. Given a solution of Equation (18) where xc
a < xc

b
and xd

a > xd
b

, if xd
a ∈ rnдb and xd

b
∈

rnдa , we can swap their TDM ratios without increasing the cost of the solution.
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ALGORITHM 4: Total Displacement-Driven Discretization.

Input: The continuous TDM ratios of the FPGA-pairA and the maximum displacement bound bndA.
Output: A legal assignment of TDM ratios of the FPGA-pairA.

1: get the available discrete TDM choices for each tdmNet in the FPGA-pairA such that the distance between
its continuous solution and every choice is within bndA;

2: sort the tdmNets in the FPGA-pairA in non-decreasing order of their continuous solutions; let the sorted
sequence be seq;

3: sort seq stably such that the tdmNets under forward direction are always in front of those under backward
direction;

4: let x[k] be the TDM ratio of the kth tdmNet in seq;
5: getMinPA(0,pA);
6: restore the best solutions from the DP;

7: function getMinPA(i,pp)
8: return the best cost at (i,pp) if computed already;
9: return 0 if i ≥ |tA |;

10: return +∞ if getMinWire(i) > pp; � getMinWire(i) is pre-computed for all i ∈ [0, |tA |)
11: prevIdx ← 0;
12: for each choice tcq in the choice range of x[i] no less than nearestTDM(x[i]) do

13: minIdx ← prevIdx + 1;
14: increase minIdx as long as tcq = nearestTDM(x[i +minIdx + 1]) and minIdx + 1 <

getEndIdx(i, tcq );
15: increase prevIdx as long as x[i + prevIdx + 1] ≤ tcq and prevIdx + 1 < getEndIdx(i, tcq );
16: curBest ← +∞;
17: for j ∈ [i +minIdx , getEndIdx(i, tcq ) − 1] do

18: curDisp ← ∑j

k=i
|x[k] − tcq |;

19: jump to line 12 if curDisp ≥ curBest ;
20: cost ← curDisp + getMinPA(j + 1,pp − 1);
21: curBest ← min(cost , curBest );
22: update the best solution at (i,pp) if cost is less than the best cost at (i,pp);
23: end for

24: end for

25: return the best cost at (i,pp);
26: end function

Proof. There are three cases: (1) xd
b
< xd

a < xc
a , (2) xc

b
< xd

b
< xd

a , and (3) xd
b
< xc

a < xd
a or

xd
b
< xc

b
< xd

a . The difference before and after swapping is d = |xc
a − xd

a | + |xc
b
− xd

b
| − |xc

a − xd
b
| −

|xc
b
− xd

a |. For case 1, d = (xc
a − xd

a ) + (xc
b
− xd

b
) − (xc

a − xd
b

) − (xc
b
− xd

a ) = 0. For case 2, d = (xd
a −

xc
a ) + (xd

b
− xc

b
) − (xd

a − xc
b

) − (xd
b
− xc

a ) = 0. Hence, swapping will not change the cost in the first
two cases. An illustration of case (3) is given in Figure 6. We can see that if xc

a and xc
b

are on dif-

ferent sides of xm where |xm − xd
b
| = |xm − xd

a |, both of their displacements will be reduced after
swapping. If they are on the same side of xm , the total displacement is also reduced. Hence, if
xc

a < xc
b

and xd
a > xd

b
, swapping their TDM ratios will not increase the cost of the solution. �

Corollary 1. Given an optimal solution of Equation (18) where no swapping as described in

Lemma 2 can be performed, it is true that xd
a ≤ xd

b
if xc

a ≤ xc
b
.

Theorem 2. Algorithm 4 can get the optimal solution of Equation (18).

Proof. We can see that Algorithm 4 exhausts all possible ways of partitioning the given non-
decreasing sequence of continuous TDM ratios and returns the best partition in minimizing the
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Fig. 6. An illustration of swapping the TDM ratios of two tdmNets.

total displacement. However, the optimality of Algorithm 4 (on the problem shown in Equa-
tion (18)) depends on whether there exists an optimal solution of the problem that can be trans-
formed into a partitioning of a non-decreasing sequence of the tdmNets’ continuous TDM values.

Given an optimal solution of Equation (18) where no swapping as described in Lemma 2 can be
performed, we can first sort the sequence in a non-decreasing order of their discrete TDM ratios.
According to Corollary 1, it is true that for all pairs a and b, if xd

a ≤ xd
b

, then xc
a ≤ xc

b
. For tdmNets

that have the same discrete TDM ratios, they can also be sorted in a non-decreasing order of their
continuous TDM ratios without changing the objective value. In this way, we can get a partitioning
of a non-decreasing sequence of the tdmNets’ continuous TDM ratios while the objective value is
still optimal. �

6 POST REFINEMENT

In discretization, our algorithm is not aware of the timing criticality of each edge and assumes
that smaller disturbance to the continuous solution will result in better timing. However, this
might result in a solution that a critical edge in the timing graph is assigned to a larger TDM
ratio. An example is shown below. Given a continuous solution atp = 8, atm = 16, delayp,q = 16,
and delaym,n = 8, it is clear that the optimal results of these two edges have 0 displacement. But
when we considering the discretization results of other edges in the timing graph, the values of
atp and atq become 15 and 9. If we swap the TDM ratios of ep,q and em,n , max (atn ,atq ) can be
improved by 6. To avoid this situation, we propose a swapping-based post refinement process
after discretization. To be specific, for the signals between each FPGA pair, we will swap their TDM
ratios to improve the system clock period. Details of the algorithm are shown in Algorithm 5. On
line 1, the system clock period is considered to have room for improvement if there is a successful
swapping in the previous iteration and the result has been improved compared to the one 10
iteration earlier. On line 4, a tdmNet netj is considered to be the candidate of neti if it satisfies the
following three constraints:

• neti and netj are in the same direction.
• The TDM ratio of netj is smaller than that of neti .
• Given ResSlackj = minep,q ∈Ej

slackq − bp,q · (xi − x j ), ResSlackj should be larger than 0.

Note that, ResSlackj is the largest possible remaining slack of a netj after its TDM ratio is swapped
with the one ofneti . On line 6, we first try those nets with largerResSlack since such swappings are
more likely to improve the system clock period. Moreover, we also maintain a history of swapping
and forbid repleting swappings, which can effectively prevent our algorithm from sticking in local
optimal.
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Table 2. The Information of the Generated Benchmark

Design #Nets #Inter-FPGA Net #Nodes #Edges

FPGA01 105,885 1,375 160,392 408,577
FPGA02 168,611 2,290 232,594 654,978
FPGA03 432,546 6,190 592,492 1,735,711
FPGA04 445,423 17,201 595,724 1,740,531
FPGA05 479,772 45,690 601,264 1,748,834
FPGA06 723,141 10,398 1,058,384 2,826,183
FPGA07 735,797 21,017 1,064,220 2,834,945
FPGA08 733,577 15,792 935,142 2,909,648
FPGA09 901,012 26,467 1,235,304 3,487,570
FPGA10 967,932 7,379 1,554,168 3,569,619
FPGA11 878,740 29,707 1,209,846 3,285,312
FPGA12 1,120,458 9,892 1,707,398 4,068,022

ALGORITHM 5: Swapping-Based Post Refinement.

Input: A legal TDM assignment.
Output: A legal TDM assignment with improved system clock ratio.

1: while the system clock period can be improved do

2: find the critical path and all the tdmNets N on it;
3: for each neti ∈ N do

4: find all the candidate tdmNets Nc in the FPGA-pair that contains neti ;
5: sort Nc in non-increasing order of ResSlack ;
6: for each netj ∈ Nc do

7: swap the TDM ratios if the resulting system clock ratio is not worsened;
8: go to line 2 if the swapping is a success;
9: end for

10: end for

11: end while

7 EXPERIMENTAL RESULT

In this work, all algorithms are implemented in C++ and tested on a Linux workstation with an
Intel Xeon 2.2 GHz CPU with 40 cores and 256GB memory. Note that all experiments are conducted
under the limitation of eight threads. In the following, we will first introduce how we generate the
benchmarks. Details of our baseline algorithms will then be shown. Finally, we will analyze the
performance of our proposed framework.

7.1 Benchmark Generation

Our benchmarks are generated from the ISPD 2016 contest benchmarks [22] in three steps: (1) par-
titioning, (2) intra-FPGA global placement, and (3) timing graph construction. The results are
shown in Table 2. The number of FPGAs is set to five and they are all directly connected, which
means that they are adjacent to each other and there are 10 FPGA pairs. The number of physical
wires between two FPGAs is set to 20. Patoh [23] is used for partitioning and RippleFPGA [24, 25]
is used as our global placer.

Given the number of devices n, we first partition the netlist into n partitions such that the num-
ber of cuts is minimized. Note that, since the netlist is formulated as a hypergraph during par-
titioning, if a multi-pin net has terminals in k FPGAs, the cut size induced by this hyperedge is
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Table 3. Notations of the LP Shown in Section 7.2

x
tc j

i

Variable indicates whether tdmNet neti is assigned to discrete TDM ratio tc j .
It is a continuous (binary) variable in Section 7.2.1 (7.2.2).

x
tc j

p,q x
tc j

i = x
tc j

p,q for all ep,q ∈ Ei .

n
f

k,tc j
(nb

k,tc j
) Integer variable indicates the number of forward (backward) wires used in

the FPGA-pair k , whose TDM ratios are tc j .

t
f

k
(tb

k
) The set of forward (backward) tdmNets of the FPGA-pair k in T .

tc The set of all discrete TDM choices, which are {1, 8, 16, 25, . . . , 1,600}.

considered to be (k − 1). For a net spanning multiple devices, we will divide it into several nets. For
example, given a net spanning four devices, the intra-FPGA parts remain to be multi-pin nets while
the inter-FPGA parts are decomposed into three nets such that each of them spans between two de-
vices only. Note that these three nets are considered as different tdmNets in the optimization steps.

After partitioning the circuit, we will have the netlist for each FPGA. We can then perform global
placement for each FPGA considering only intra-FPGA connections.

Finally, the timing graph is constructed, where the netlist must be acyclic. We will first de-
compose each FF, BRAM, and DSP into two nodes such that one is associated with the incoming
signals and the other is with the outgoing signals. Besides these three types of logic elements, each
LUT/IO corresponds to a node in G. Each n-pin net is represented by (n − 1) edges such that each
edge connects the driver and one of the fan-out pins. There are two kinds of edges in the graph:
one is for the inter-FPGA connections while the other one is for the intra-FPGA connections. For
each intra-FPGA edge, we will use the global placement result to estimate its delay, which is pro-
portional to the Manhattan distance between the logic elements it connects. For those inter-FPGA
edges, each of them is associated with a TDM ratio, which is the variable we will optimize later. In
our experiments, bp,q , cp,q is set to 5 and 0 for all inter-FPGA edges. There is also a delay for each
LUT, which is 2ps.

7.2 LP Baseline

Since there is no prior work that directly works on this problem, two LP-based methods are pro-
posed as our baselines for comparison, where Gurobi [26] is used as our LP solver. The notations
are shown in Table 3.

7.2.1 Continuous LP Baseline. As shown in Equation (19), a continuous LP-based method is
proposed as a baseline for comparison with the continuous solver in our method.

min atsink, (19a)

s .t .
∑

tc j ∈tc

x
tc j

i = 1, ∀i, (19b)

∑
i ∈tk

∑
tc j ∈tc

x
tc j

i · 1

tc j
≤ pk , ∀k ∈ T , (19c)

atq ≥ atp + bp,q ·
∑

tc j ∈tc

x
tc j

p,q · tc j + cp,q , ∀ex
p,q , (19d)

atq ≥ atp + delayp,q , ∀ec
p,q , (19e)

0 ≤ x
tc j

i ≤ 1, (19f)

atsrc = 0. (19g)

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 2, Article 21. Pub. date: January 2020.



21:18 C.-W. Pui and E. F. Y. Young

Fig. 7. The error ratio calculated by Equation (20) after adding integers to tc in Equation (19).

Note that the TDM ratio xi is represented by
∑
x

tc j

i · tc j , whose wire usage is 1∑
x

tcj
i ·tc j

. Since this

cannot be expressed in LP, we approximate it by
∑
x

tc j

i · 1
tc j

. We call the error of this approximation

uer r . The reason we choose this method to represent the TDM ratio and wire usage of neti is
that the error is zero whenever xi is equal to any tc j ∈ tc . To reduce the error caused by the
approximation, we add some additional small TDM choices in the LP. To be specific, in addition to
the original discrete TDM choices, we add the integers under 16 to tc in our implementation. To
verify the effect of this method, the LP shown in Equation (20) is performed for all v ∈ [1, 1,600],
whose results are shown in Figure 7(a).

min uer r =

∑
tc j ∈tc x

tc j · 1
tc j
− 1

v

1
v

, (20a)

s .t .
∑

tc j ∈tc

x tc j = 1, (20b)

∑
tc j ∈tc

x tc j · tc j = v, (20c)

0 ≤ x tc j ≤ 1, (20d)

where x tc j is a continuous variable and v is the TDM ratio to be measured. We can see that, for
any v ∈ [1, 1,600], a linear combination of x tc j can always be found such that the estimated wire
usage is about 4% larger than the actual wire usage.

It is clear that the method we use to reduce the error rate is a tradeoff between runtime and
quality since we can further reduce the error by adding more small choices to tc , which is shown
in Figure 7(b) and (c).

Since Equation (19) has the same constraints and objective as Equation (2), we can prove that
there is a guaranteed error bound to the optimal solution of PP by approximating it with the
optimal LP solution.

Theorem 3. Given that the wire usage error rate uer r is no greater than r for allv ∈ [1, 1,600], the

optimal solution of Equation (19) has a guaranteed error bound of r to the optimal solution of PP.

Proof. Let xi =
∑
x

tc j

i · tc j and the optimal solution of PP be x∗. Consider xi = (1 + r ) · x∗i .
From Figure 7, we can see that, for any xi ∈ [1, 1,600], there is always a linear combination of

x
tc j

i satisfying Equations (19b) and (19f) such that 1+r
xi
≥ ∑x

tc j

i · 1
tc j
≥ 1

xi
. Since x∗ is the optimal

solution of PP, we have∑
i ∈tk

∑
x

tc j

i · 1

tc j
≤
∑
i ∈tk

1 + r

xi
=
∑
i ∈tk

1 + r

x∗i · (1 + r )
=
∑
i ∈tk

1

x∗i
≤ pk ,∀k ∈ T .
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Hence, we can conclude that (1 + r ) · x∗i is in the solution space of Equation (19). Given that the
objective value of Equation (19) is a linear function of xi which equals (1 + r ) · x∗i , the ratio between
the optimal solution of Equation (19) and the optimal solution of PP is at most (1 + r ). �

Moreover, to improve the runtime of the baseline, we limit the number of available discrete
TDM choices used to represent the continuous TDM ratio. To be specific, for each tdmNet, the
difference between the discrete choices and its continuous solution is set to at most 64.

7.2.2 Mixed Integer Linear Programming Baseline. A mixed integer linear programming (MILP)
is proposed as the baseline for comparison with the original TDM optimization problem shown in

Section 2.3. The formulation is the same as Equation (19) except that x
tc j

i is a binary variable and
Equation (19c) is substituted by Equations (21) and (22) to model the exact wire usage.

ndir
k,tc j

≥

∑
i ∈tdir

k
x

tc j

i

tc j
, ∀k ∈ T ;∀tc j ∈ tc ;dir ∈ { f ,b}, (21)∑

tc j ∈tc

nb
k,tc j
+ n

f

k,tc j
≤ pk , ∀k ∈ T . (22)

7.3 Result Analysis

In this section, we will analyze the results of our method. First we will discuss the performance
of our continuous solver in terms of quality and scalability compared with the LP-based methods.
Then we will compare the performance of our discretization method with a total displacement-
driven discretization.

7.3.1 Result of Lagrangian-Based Continuous Solver. As shown in Section 4.3, our continuous
solver will stop once the results converge or the iteration limit is reached. In our experiment,
the iteration limit is set to 1,000. Figure 8 shows the convergence graph of our Lagrangian-based
continuous solver, where the red and blue lines represent the primal and dual values, respectively.
Our solver converges around 400 iterations in most of the test cases but there are some glitches
on the convergence curves, especially for those iterations that are near the end of our solver. The
reason for the glitches is that our multiplier updater may change some of the multipliers too much,
which results in some very big TDM ratios. However, as shown in the figures, our solver recovers
from these kinds of glitches very quickly and manages to converge in terms of primal and dual
values.

To evaluate the result quality, we have run the LP-based methods with two sets of settings, which
are the original LP and the LP with reduced choices. Note that the LP with reduced choices is based
on the continuous results of the Lag solver (by limiting the choices to the surrounding discrete
choices of the continuous solution). Table 6 shows a comparison of the system clock period (SCP)
and the runtime between different methods. Based on our Lag method, the LP method with reduced
choices can achieve about 5% improvement in SCP with 3× runtime. If we run the original LP, it
cannot finish in large scale test cases due to the large number of variables and constraints. Note
that the memory usage of our method for large scale designs is less than 2 GB, while the original
LP may use up to 30 GB.

7.3.2 Result of Max-Displacement Bounded Discretization. Table 4 shows the performance com-
parison between our discretization methods and the one with total displacement minimized. Our
proposed method can achieve 18% improvement in system clock period with significantly faster
runtime. It also infers that maximum displacement is a better metric compared with total dis-
placement since it measures the maximum disturbance to the continuous solution, which is more
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Fig. 8. The convergence curves of different test cases. Red line is the value of primal while the blue line

represents the dual value.

related to how the system clock period is calculated. With the pruning techniques we propose,
the runtime of our discretization method can be further improved by up to 50% on large test cases
like FPGA5 and FPGA11. Note that, since our discretization is very fast on small test cases, the
runtime variations due to operating system may significantly affect the performance evaluation
of our pruning techniques on small cases.

7.3.3 Result of Swapping-Based Post Refinement. Table 5 shows the performance of our post
refinement method. Based on the results generated by our proposed Lagrangian solver and
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Table 4. System Clock Period and Runtime Comparison between Different Discretization Methods

Design
System Clock Period (ps) Runtime (sec)

Disp-Flow MaxDisp-Flow
MaxDisp-Flow

(Prune)
Disp-Flow MaxDisp-Flow

MaxDisp-Flow
(Prune)

FPGA01 183 1 181 0.989 181 0.989 0.29 1 0.20 0.710 0.17 0.601

FPGA02 512 1 424 0.829 424 0.829 1.03 1 0.25 0.242 0.31 0.305

FPGA03 956 1 886 0.927 886 0.927 6.75 1 0.88 0.130 0.98 0.146

FPGA04 3,653 1 3,439 0.942 3,439 0.942 146.61 1 1.92 0.013 1.53 0.010

FPGA05 9,885 1 8,518 0.862 8,518 0.862 844.86 1 20.81 0.025 9.45 0.011

FPGA06 1,496 1 1,259 0.842 1,259 0.842 18.30 1 1.29 0.070 1.10 0.060

FPGA07 3,715 1 3,172 0.854 3,172 0.854 154.85 1 2.12 0.014 1.81 0.012

FPGA08 6,694 1 4,214 0.630 4,214 0.630 192.68 1 3.17 0.016 1.67 0.009

FPGA09 7,133 1 5,090 0.714 5,090 0.714 328.64 1 2.74 0.008 2.14 0.007

FPGA10 1,421 1 1,078 0.758 1,078 0.758 18.08 1 1.86 0.103 1.30 0.072

FPGA11 9,508 1 7,268 0.764 7,268 0.764 513.47 1 12.07 0.024 6.37 0.012

FPGA12 1,891 1 1,488 0.787 1,488 0.787 23.14 1 1.60 0.069 2.18 0.094

Average 1 0.825 0.825 1 0.119 0.112

1 Both discretization methods are based on the results of our Lagrangian solver.

Table 5. System Clock Period and Runtime of Our Post Refinement Method

Design
System Clock Period (ps) Runtime (sec)

w/o Refinement w/ Refinement w/o Refinement w/ Refinement
FPGA01 181 1 174 0.963 29 1 31 1.053
FPGA02 424 1 415 0.977 33 1 38 1.156
FPGA03 886 1 863 0.974 129 1 151 1.169
FPGA04 3,439 1 3,153 0.917 148 1 190 1.282
FPGA05 8,518 1 8,325 0.977 190 1 192 1.013
FPGA06 1,259 1 1,151 0.914 275 1 324 1.178
FPGA07 3,172 1 2,960 0.933 198 1 358 1.809
FPGA08 4,214 1 4,214 1.000 160 1 162 1.012
FPGA09 5,090 1 4,695 0.922 236 1 358 1.517
FPGA10 1,078 1 1,066 0.989 252 1 257 1.021
FPGA11 7,268 1 7,268 1.000 260 1 262 1.008
FPGA12 1,488 1 1,288 0.866 434 1 520 1.198
Average 1 0.953 1 1.201

1 The post refinement process is performed on the results of our proposed Lagrangian solver and discretiza-

tion method.

discretization method, it can improve the system clock ratio 5% on average with 20% runtime
overhead.

7.3.4 Result of Our Proposed Framework. Table 6 shows the results after discretization of differ-
ent continuous methods. As one can see, although our Lag method has worse SCP in the continuous
domain compared to the LP methods, it results in similar or even better SCP after discretization.
This is because there is a gap between the continuous and final results due to the discrete TDM
choices and wire limit constraints. The continuous result with better SCP might be far from the
discrete choices, which will be severely disturbed in discretization. Note that we also run the MILP
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Table 6. System Clock Period and Runtime Comparison between Different Continuous Methods

System Clock Period (ps)

Design Continuous Discretized
Runtime (sec)

Lag Lag+LP_64 LP Lag Lag+LP_64 LP Lag Lag+LP_64 LP Lag Lag+LP_64 LP

FPGA01 144 1 134 0.933 134 0.933 181 1 177 0.978 177 0.979 174 1 174 0.999 174 0.999 31 1 36 1.170 20 0.660

FPGA02 366 1 361 0.986 361 0.986 424 1 433 1.021 433 1.021 415 1 418 1.008 418 1.008 38 1 49 1.295 37 0.964

FPGA03 787 1 737 0.936 737 0.936 886 1 875 0.988 875 0.988 863 1 857 0.993 857 0.993 151 1 224 1.485 223 1.484

FPGA04 2,827 1 2,724 0.963 2,721 0.962 3,439 1 3,371 0.980 3,299 0.959 3,153 1 3,116 0.988 3,220 1.021 190 1 744 3.908 8,105 42.587

FPGA05 6,140 1 5,837 0.951 - - 8,518 1 8,799 1.033 - - 8,325 1 8,485 1.019 - - 192 1 1,529 7.945 - -

FPGA06 1,093 1 1,003 0.918 1,003 0.918 1,259 1 1,267 1.006 1,322 1.050 1,151 1 1,267 1.100 1,267 1.100 324 1 681 2.099 1,613 4.974

FPGA07 2,747 1 2,648 0.964 - - 3,172 1 3,165 0.998 - - 2,960 1 3,005 1.015 - - 358 1 1,220 3.411 - -

FPGA08 3,217 1 3,101 0.964 3,098 0.963 4,214 1 4,294 1.019 4,214 1.000 4,214 1 4,294 1.019 4,214 1.000 162 1 918 5.651 3,339 20.553

FPGA09 4,146 1 - - - - 5,090 1 - - - - 4,695 1 - - - - 358 1 - - - -

FPGA10 901 1 872 0.967 872 0.967 1,078 1 1,132 1.050 1,092 1.013 1,066 1 1,070 1.003 1,066 1.000 257 1 347 1.348 570 2.214

FPGA11 5,163 1 - - - - 7,268 1 - - - - 7,268 1 - - - - 262 1 - - - -

FPGA12 1,217 1 1,056 0.868 1,054 0.866 1,488 1 1,411 0.948 1,331 0.895 1,288 1 1,411 1.095 1,331 1.033 520 1 485 0.932 905 1.739

Average 1 0.945 0.941 1 1.002 0.988 1 1.024 1.019 1 2.924 9.397

1 All ohe continuous methods are discretized by our proposed discretization method.
2 e time limit of LP is seo 10 , 000 seconds in our experiments. LP_64 represents the LP method with reduced choices

while LP indicates the original LP method.

shown in Section 7.2.2 for up to 10,000 seconds, which fails to find a feasible solution for any cases.
Even if starting with a very “bad” feasible solution, it cannot further improve the result.

8 CONCLUSION

In this work, we propose a novel method for the TDM optimization problem in a modern multi-
FPGA system. To be specific, an analytical framework is used to minimize the system clock period,
which consists of a Lagrangian relaxation-based continuous solver, a discretization considering
both maximum and total displacement, and a swapping-based post refinement that optimizes the
TDM ratios on critical paths. Experimental results show that our approach is scalable and effective
in large scale multi-FPGA–based designs compared with LP-based methods. Future works may
consider discretization effect in the continuous solver, and so forth.
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